A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images

نویسندگان

  • Aiping Ding
  • Bin Han
  • Lei Wang
  • Lei Xing
چکیده

The aim in this study is to develop a generalized strategy for 3D dose verification of IMRT and VMAT planes using EPID transit images in combination with Monte Carlo (MC) simulations. An EPID-based dosimetric verification procedure was developed to convert EPID-measured transit images into 2D exit photon fluence by de-convoluting with the MC-simulated EPID response kernels. The present scatter from the phantom to the EPID was iteratively corrected by using a series of pencil beam scatter kernels derived from MC simulations. The primary fluence is therefore yielded by subtracting the corrected scatter from the total reconstructed exit fluence and used to reconstruct the dose distribution in multiple 2D planes parallel to the EPID by convoluting with the pencil beam deposition kernels. After summing up all the reconstructed 2D dose planes, the 3D dose distribution is obtained. The EPID-based dosimetric system was validated using 6 MV photon beam available from Varian TrueBeam STXTM. The results show that the EPID-based dosimetry system developed in this study is an accurate and robust tool for dose verification of IMRT/VMAT plans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT

Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...

متن کامل

3D EPID-based in vivo dosimetry for IMRT and VMAT

In this paper the various approaches of EPID-based in vivo IMRT and VMAT dose verification, and their clinical implementation, are described. It will be shown that EPID-based in vivo dosimetry plays an important role in the total chain of verification procedures in a radiotherapy department. EPID-based dosimetry, in combination with in-room imaging, is a fast and accurate tool for 3D in vivo ve...

متن کامل

In vivo dose verification using using an amorphous silicon flat panel-type imager (a-Si EPIDs)

Introduction: Electronic portal imaging devices (EPIDs) could be used to dose verification of radiotherapy treatment plans. In vivo dose verification is performed to reduce differences found between dose delivered to the patient and the prescribed dose. The aim of this study was to perform a fast and efficient technique for the verification of delivered dose to the patient usin...

متن کامل

Assessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification

Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...

متن کامل

EPID in vivo Dosimetry

Introduction: The most modern radiotherapy devices are equipped with an Electronic Portal Imaging Device (EPID) system which is located on opposite side of the machine’s head. EPID system is often used to setting up the position verification during or between radiotherapy sessions. Material and Methods: Various types of dosimeters have been used to setting up ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016